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A rigorous derivation is given of upper and lower bounds for the
thermal resistance of a body enclosed between two surfaces, one of
which encloses the other. The two-dimensional and three-dimensional
cases are examined. Specific formulas are given for the cases of a
rectangle in a rectangle and a parallelepiped in a parallelepiped.

1. The problem can be formulated as follows: we
wish to find upper and lower bounds for the thermal
resistance of bodies of complex shape.

The basic method is based on the analogy between
steady thermal and electrostatic fields. Let there be
a surface Sy enclosing a surface S;. The temperature
of 8; is maintained at t; = 1, and of Sy at ty = 0. The
thermal resistance R between surfaces Sy and S, is
related to the electrical capacitance C of a capacitor,
whose plates, surfaces S; and 8;, are maintained
at potentials u; = 0 and w = 1, respectively. (The
space between S; and S, is filled with a dielectric with
€ = 1.) According to [1],
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where k is the thermal conductivity, We shall evaluate
the quantity ™1,

2. What follows is based on the well-known varia-
tional determination of capacitance,

C=inf||yulaV, ulg =0, ulg =1, ()
“w D o 3

where inf, the greatest lower bound, is evaluated over
the set of differentiable functions transforming into

0 and 1 on S and 8, respectively, From definition (2)
we can derive the following lemma.

Lemma 1. The capacitance is not increased
when the system is made symmetrical.

A formal definition of symmetrization and a proof
of Lemma 1 are given in [2]} and in [3].

Referring the reader to [3]for the proof of Lemma 1,
we introduce the definition given there of the concept
of symmetrization, used in Lemma 1.

Definition, Symmetrization relative to a plane P
transforms a body D into a body D*, which has the
properties:

1) D* is symmetrical relative to P;

2) any straight line perpendicular to P and inter-
secting one of the bodies D or D* also intersects the
other; chords intercepted on the straight line by the
two bodies have the same length; and

3) the intercept of the straight line considered with
D* takes the form of a single section which is bisected
by the plane P. An analogous definition holds for sym-

metrization of the plane of the figure relative to a
straight line lying in the plane of the figure. Repeated
symmetrization relative to a suitably chosen infinite
sequence of planes (lines) transforms any body (figure)
into a sphere (circle) with the same volume (area).

So
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Fig. 1. Rectangle within a rectangle,

The capacitance property indicated in Lemma 1 can
be used to find an upper estimate for the quantity c,
For example, we shall consider the plane problem:
to evaluate C™! for a plane situated between curves C,
and C;, spanning areas A, and A;, respectively. It
follows from Lemma 1, that
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(3)
since symmetrization sends the curvilinear ring,
bounded by curves Cy and Cy, into the circular ring
for which C™! coincides withthe right side of inequality
(3). A mathematical proof of Eq. (3) is given in the

book [3] and the article [4].

To obtain a lower bound for C™!, we make use of
the following inequality:
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S(v)

The function S(v) is a family of closed surfaces such
that S(v) is contained within S(u) for v < u, S(0) =S,
and S(v4) = Sy. Inequality (4} is given in the book [3],
page 85. :

3. We shall apply the arguments of §2 fo obtain
an estimate of the quantity C™!, suitable for practical
application. Let the temperature on surface S; be 1,
and on Sy, 0. From Eq. (3), we have

ab (6)
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We shall choose S(v) to be the rectangle shown in
Fig, 1, and the parameter v to be the distance noted
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Fig, 2, Rectangle within a rectangle.

on Fig, 1, 0= v = d, We shall calculate T(v) from
Eq. (5):

T(v)—~[
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From Eq. (4) we have

n (1+% d)gc—}. (10)

Here B and A are determined according to Egs. (8)
and (9) in terms of the data of the problem. Finally
we have

ab

B-lln(l4+BA- ) L Cn ~—. (11)

Example 1. In order to estimate the error made in
calculating according to Eq. (11), we shall consider
an example in which @ =8 =8; a/2; =b/b; =n., We
have

A= 1 [2—Va2+b2+2— Va2+b2],
38
2 2
B= 1 (tga+ctga) = — LEE
T T ab
®— 1 1/az+b2

d= ” 5 >
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xab
F In(+BAT) = ———p Inx.
Therefore,
zn-ibbz' Inx LC7'K In%? = 2Inx. (12)

We shall consider the case when the rectangle is close
to being a square, i.e., b/a ~ 1. Then

1.57Inx L C-1 < 2lnx. (13)

If we take C™! to be the arithmetic mean of the upper
and lower bounds, i.e., we put

2lnx + 1.57Inx

Cl= =1.781nx%, (14)

then the relative error will not exceed (1.78 - 1.57)/
/1.57 = 0,14, Thus, it is convenient to use the formula
1

c—l=—'[\ ab

axbx

— In(l 4 BA-'d 140
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where A and B are determined by Egs. (8) and (9).
An approximate determination of the capacitance
according to Eq, (2) can be made as follows. We take
any function u(x), transforming into 0 on §; and into 1

on 84, for which the integral _f Ivu(x) PdV, x= (x, x)
D

is calculated, The value obtained is an approximate
value of the capacitance, exceeding the true value,

Fig. 3. Parallelepiped within 2 parallelepiped.

We shall demonstrate another method for evaluating
a lower bound of C™!, using the quantities hy, hy, g,
and gy, 0= v =]y (see Fig. 2):

-l )l 5

h
= ? (hidyp + a) 4 gldop + by)l,
di=a—a; dy=b—b,

p=vh h=h'+hyY g =g g7
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Hence,
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where

A’ == hdl "§"‘ng, B’ = hCI} + gbx-

1f is appropriate to comment on the matter of rea~
sonable cholee {from the viewpoint of minimizing the
relative eyror) of the value of the guantity x, which
lies within the limits @y < X < Q, and takes on any
value in the Interval (Qp.Q) with equal probability,
The desired value x = 2Q;/4Qs + Q) reaches a min-
imum, since x is then the maximum of the errors
{x — Q)/Qy and {Q; — x)/Qy. For example, if we use
the formula

1. 2-157Inx2inx

= 1.76 Inx,
157Ins + 2inxn

(14"

instead of Bq. {14}, the relative error will then not exceed

L76 — 157 = 2~ L76

= = 0.12.
1.57 2

4, We shall consider the case when the bhody ig
situated between parallelepipeds 8y and 8. It is con~
venient to regard the distances 4, hy, hy, g4, 29, f1s
and fy as known, We shall estimate an upper bound
for the quantity C™! in analogy with Eg, (3). In the
three~dimensional case we have
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where

3 i
n==(—- Vi) =1, 0; (15)
4n

and Vi ig the volume cloged within the surface Si.

In our case, Vi = ﬁbe, V;; L{ﬁ}g{}g, and
1
dn o /1 1
c-*<(——§~) (‘72’75_‘7!73) (16)

We shall caloulate T{»), having taken S(r}tobe a
parzlielepiped situated with respect to the two given
parallelepipeds in the same way as the rectangle S()
in Fig. 1 was situated with respect to the vrectangles

Sg and S;. We shall take the parameter » to be the
distance shown in Fig. 3, 0= y < h;, We have
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Therefore, putting # = v/hy, we have
oy i d
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where
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We shall introduce the notation

i i 1 i 1 i

DRI i A e
@y =, b—b=dy c—c =1d, (19)
Then,
o = iy + gdydy -+ fiod, {20}
B = h(dhby + dotr) + g (ot + dyby) + (s +andy), (21)
v = hmb, + g by + faon (22)

Example 2. Let there be two appropriately located
cubes (see Fig. 3} such that

c—c a-—
by == fiy = 21 v B e = L,

2
b—b
h=f= 21 a=b=c,
a & ¢
———mwwa‘——:xf}}‘ Hom gomm Foum o
P g=} )
d=a(x—1), o= 1200 1), [ ==24a,
12::%“_ 2
Y= w—1 -

Let, for example, % = 2, Then,

f.i*.{‘.)'” _.L__ML«);..
( 3 (ﬂx 2, |~
du %
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Therefore, if we put C™! = (0.80 + 0.52)/2a; = 0.66/
/ay, therelative error will not exceed (0.66 — 0.52)/0.52 =
= 0.27. If we choose 0.63/a, for C™, therelative error
does not exceed 0.21. The number 0.63 appears as fol-
lows. The error does not exceed the maximum of the num-
bers ((0.80 — 0.52)/0.52)q and ((0.80 —~ 0.52)/0.80)(1 —

- q), 0<g <1, Forg = 0.39 both these numbers equal
0.21, andforq = 0.39 one of them is greater than 0.21,

In conclusion, we compare our value of cl= 0.66/
/a; with the exact known value for a spherical layer
enclosed between spheres with radii ry and r > ry,
for which C™' = 1/r; — 1/r.

We shall choose r; and r such that the volumes
of the corresponding spheres are equal, respectively,
to the volumes of the cubes with sides a; and a = 2ay,
i.e., we put r; = a,(3/4m)!/3, r = 2r,. Then

1
c_x=L.__1'_=(ﬂ)§(L_ 1 )____0.80‘
n r 3 ay 2(11 ay
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As follows from the general considerations presented
in Section 1, we obtain the value appearing on the right
side of inequality (23).
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